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Finite-size scaling effects of the Ising model with quenched random impurities 
are studied, focusing on critical dynamics. In contrast to the pure Ising model, 
disordered systems are characterized by continuous relaxation time spectra. 
Dynamic field theory is applied to compute the spectral densities of the 
magnetization M(t) and of M2(t). In addition, universal cumulant ratios are 
calculated to second order in e t/4, where e = 4 -  d and d < 4 denotes the spatial 
dimension. 

KEY WORDS: Dynamic critical phenomena; disordered spin systems; Ising 
model; finite size; scaling. 

1. INTRODUCTION 

Dur ing  the last few years the critical behavior  of  d isordered Ising systems 
has recovered much of its early interest. Cri t ical  exponents  in three 
dimensions have been calculated to four- loop order  ~ and logar i thmic 
correct ions in the upper  critical d imension have been studied, t2) Extensive 
compute r  s imulat ions of the dilute Ising model  at various concentra t ions  
have shown the impor tance  of crossover effects which give rise to effective 
(nonasympto t ic )  critical exponents/3-5~ The calculat ion of these exponents  
in a field-theoretic renormal iza t ion  group appraoch  requires the s tudy of 
the flow of the coupl ing constants  away from the fixed points, t6) 

In this work finite-size scaling effects of the Ising model  with r andom 
impuri t ies  are invest igated to second order  in e ~/4 ( e = 4 - d ) .  Since its 
in t roduct ion  by Fisher  17~ the idea of finite-size scaling has provided a 
systematic ex t rapola t ion  procedure  for da ta  obta ined  by s imulat ions on 
small samples. An analyt ic  approach  to the calculat ion of finite-size effects 
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has been developed by Br6zin and Zinn-Justin (8~ and extended to critical 
dynamics by several authorsJ 9-~3) The central idea developed in these 
papers is the derivation of an effective Hamiltonian (or an effective 
Fokker-Planck equation in the dynamic case) for the homogeneous mode 
of the order parameter field. This effective Hamiltonian allows the applica- 
tion of nonperturbative methods to obtain correlation functions of the 
homogeneous mode which cannot be calculated in an expansion around 
the Gaussian model. 

Dynamical properties of a system are determined by relaxation times. 
Consider, e.g., the normalized correlation function of a quantity d :  

( d ( t )  ~r -- ( ~ r  ( ~ ( t ' ) )  
r  t ' )  = ( ~ r  _ ( d ( t ) )  2 (1) 

For a pure system ~ ( t )  may be written in the form of a series ~9) 

f fd ( t )=  ~ c e -I'1/~" (2) 
n E  I 

with a discrete set of relaxation times T,, > 0. In the limit t ~ oo the correla- 
tion function is governed by the contribution with the largest relaxation 
time and a nonvanishing coefficient c~r 

In order to compute the relaxation time spectrum of a disordered 
system one has to perform configurational averages of correlation func- 
tions. For an analytical approach it is convenient to average numerator 
and denominator of ~ separately with respect to disorder instead of 
averaging the quotient: 

( ~r d ( t ' )  ) - ( d ( t )  ) ( ~ ( t ' )  ) 
~ , ( t -  t ' ) =  (3) 

( d ( t )  2 ) - ( ~ ( t ) )  2 

(Throughout the text, the bar denotes the average over disorder.) This 
definition differs from the one used in ref. 5. Disorder generates a 
continuous spectrum of relaxation times which may be described by a 
density p~  : 

f? �9 ~,(t) = dz p~c(z) e-I,I/T (4) 

The aim of this article is the calculation of p~,(z) by means of dynamic field 
theory, t14-16) Section 2 presents the field-theoretic model for an Ising system 
with random impurities and reviews its renormalization. In Section 3 an 
effective dynamic functional for the homogeneous mode is derived and an 
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equivalent formulation of the dynamics by a Fokker-Planck equation is 
discussed. As a first application of the formalism universal cumulant 
ratios which may be compared with results obtained by simulations are 
calculated in Section 4. In Section 5 the spectral densities p~,(~) for ~r = M 
(magnetization) and ~ r  2 are computed. The results are discussed in 
Section 6. 

2. THE M O D E L  

A field-theoretic model for a system with quenched random impurities 
is given by the Landau-Ginzburg Hamiltonian 

1 .q_ ~II $4 jl_ ~ (5) 

where s is an order parameter field and ~b models the impurities which shift 
the temperature locally. In this paper we consider an (n = 1)-component 
order parameter (Ising model), since for n >/2 the specific heat exponent is 
negative (for d = 3 )  and the impurities are irrelevant for the asymptotic 
critical behavior. "7) The distribution of the random field ~, is Gaussian 
with zero mean and the correlations 

O(r) O(r') = f r ( r  - r') (6) 

The dynamics of a nonconserved order parameter can be expressed in 
the form of the Langevin equation 

a~[s] a,s=-2~+#(r,t) (7) 

where ~ is a Gaussian random force which models the microscopic degrees 
of freedom: 

(((r ,  t) ((r', t') ) = 226(r - r') 6 ( t  - t ' )  (8) 

(The brackets ( . . . )  denote an average over thermal noise.) In the sequel 
a path integral formalism is employed which is equivalent to the Langevin 
equation(7) but better suited for the application of field-theoretic 
renormalization-~roup methods. Mean values are obtained as functional 
averages with weight e x p ( - ~ [ L s ] ) ,  where ~ is the dynamic func- 
tional ~4-x6)  

(9) 
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The response field ~ has been introduced to average over the thermal noise. 
Since the weight e x p ( ~ )  requires no 0-dependent  normalization constant, 
one may average over ~ without introducing replicas 1~8) 

e x p ( - G E L  s ] ) = e x p ( - ~ - - [ &  s ] )  (10) 

where 

~ ' - [g , s ]=f  d a r I I d t ( g ( O , s + ) . ( r - A ) s + 2 - ~ s 3 ) - 2 g  z) 

~ f  dt es (11) 
2 \  

A perturbative calculation of correlation and response functions (treat- 
ing the coupling coefficients f and g as perturbations) leads to integrals 
which are ultraviolet-divergent at the upper critical dimension d c = 4. To 
obtain a well-defined renormalized field theory we render these integrals 
finite by analytic continuation in d (dimensional regularization) and absorb 
the remaining poles at e = 0 into renormalizations of coupling constants 
and fields. The required renormalization constants have been calculated at 
two-loop order. (6'~9) Here only the one-loop Z-factors are shown, since 
they are sufficient for our purpose. The renormalizations are 

S "*  S O =- Z ~/2s  

z --, Zo = ( Z J Z s ) r  

"9 g ~ go = ( Z , / Z ; ) g  

2 -o 20 = (Zs/Z~) m 2 

f'-* fo = ( Z v / Z ~ ) f  
(12) 

G , g =  uff  G~f= vf f  

where the bare quantities are indicated by the index 0, and 

Z e =  1 - ( 4 v ) / e +  . . .  Z s = l +  . . .  

Z,  = 1 + u/e - (2v)/e + --- Z , , = l  +(3u) /e - (12v) /e+ ... (13) 

Zo = 1 + (2u)/a - (8v)/e + -.- 

In (12), # is an external momentum scale and the factor G , =  
F(1 + e/2)/(4~) a/2 has been introduced for convenience. 
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3. EFFECTIVE FUNCTIONAL FOR THE q = O  MODE 

In this section the model (I 1) is considered in a finite cubic geometry 
of linear size L with periodic boundary conditions. The calculation of 
finite-size effects in this field theory follows the line taken in the analysis of 
the finite pure system t9-~1) and the discussion of nonequilibrium phase 
transitions in a finite geometry. "2'~3) 

We transform the fields go and So to Fourier space by writing 

So(r, t )=ESo,  q(t)e iqr, so(r , t )=ESo.q(t)e iqr (14) 
q q 

where q== (2n/L)n=, n~=O, +_1, +2 .... (~= 1 ..... d). At the critical point 
the q = 0 modes may not be treated perturbatively, since the correlator of 
the field s has an isolated pole at q2 = 0. Additional factors of the form 1/q 2 
are generated through time integrations in Feynman graphs. In order to 
treat the q=O modes separately we decompose the fields go, So into 
homogeneous modes 3~o(t), Mo(t) and their orthogonal complements 
~bo((~bor, t), ~o(r, t): 

go(r, t )=.~to(t)+~o(r ,  t) 

so(r, t) = Mo(t) + ~bo(r, t) 

ff/Io(t ) = L-a  I dar go(r, t) 

Mo(t ) = L-a  I dar so(r, t) 
(15) 

One obtains an effective dynamical action ~om[gtO, Mo] by integrating 
out all q 4 = 0 modes: 

e x p ( - ~ o m  [/1~o, Mo]) 

= f ~[~o,  ~bo3 e x p ( -  Y E)l~t o + ~o, Mo + ~bo3) 

= f ~E~o, ~bo] e x p ( -  ~--~~ [)Q o, Mo] - J - c  [~o, ~bo] 

- ~ . , [ ~ o ,  Mo; ~o, ~o]) 

where 

2~fo dt ff/IoMo (16) 
2 

~-G[;o,(~o]=I dar l dt[;o(O,qko+ 2o(To-A)(~o)-2o;2 ] (17) 
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Fig. L One-loop contributions to y.ho,, [Eq. (24}]. Wiggly lines with or without an arrow 
represent ~ or M fields, respectively; broken lines represent correlations of the disorder. 

and 

Eo,[~o, Mo; ~o, r 

(18) 

In Eq. (18), only those interactions are given which are necessary to 
calculate the leading contributions to ~ o ~  for small e (this statement will 
be explained below). The Feynman graphs which have to be evaluated to 
obtain the shift of Tc and the renormalization of coupling constants are 
shown in Fig. 1. 

To see what calculation has to be performed to derive the effective 
functional, let us consider the second graph in the first row of Fig. 1 in 
more detail. Its contribution to .~o,, reads 

I ~ f' Xof o dt dr' g4o(t) Mo(t') L -a ~" e -)'~176176 (19) 

Using the Taylor series 

1 Mtoi~(t)(t, t) J 
j=O 

(20) 
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one obtains the expansion 

(19) =,lofo f_ L 

= 2ofo dt ffIo(t) 
- - C O  

1 : L 2 " ~  j 
x 

j = O  

dt/Qo(t) ~ ( - 2 0 ) - /  1 
y=o J ---~" M~~ q~o ~ ( zo+q  2)i+1 

L 2 
(21) 

where the function I(x) is defined as a d-dimensional sum over integers 

1 1 
I(x) (22) 

(27t) a ,90 x + n 2 

As mentioned above, the bare parameters and fields have to be expressed 
by their renormalized counterparts z, 2, f ,  g, M, and M to remove 
ultraviolet divergences from the theory. The divergencies in the expansin 
(21) come from the functions I(x) and I'(x). We will return to this point 
later in this section. 

The next step is to decide which terms in the expansion have to be 
kept to obtain physical quantities at second order in e~/4. For this purpose 
it is crucial to realize that the interaction S dtigIM 3 has to be present 
already at lowest order in the perturbation series since it is required to 
stabilize the system at temperatures T~< Tc. (Remember that above four 
dimensions go is a dangerous irrelevant variable.) On the other hand, the 
renormalized coupling constant g is at the random fixed point of order 
e~/2. "9) In order to see how the expansion in (noninteger) powers of ~ is 
organized we rescale .~r, M, and t in such a way that the coefficient of 
S dt filM 3 becomes O(~ ~ at the fixed point of the renormalized theory 
while the Gaussian part remains unchanged for z = 0: 

i9l~el/Sffl, M~e- I /SM,  t~e- l /4 t  (23) 

Inserting these rescalings into the expansion (21) and remembering that 
f =  O(e '/2) at the fixed point one, finds that the leading term ( j - 0 )  is of 
order e ~/4, while the second term ( j =  1 ) is of order e ~/2. All other contribu- 
tions are at least O(e3/4). 

In the same way one can make sure that all other new interactions 
(not contained in ~oz-(o) homJ can be ignored at order e 1/2. The same is true for 
contributions from diagrams with more than one loop. 
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After these considerations the calculation yields the effective functional 

9"-hom[l~Io, Mo]=La[Idl(~Io(FoOtMo+).ofoMo+~--~M3 ) 

/1 N/LX-(a-2' ( ( L )  2) 
<o:~o+t~go-SoJt~. ) ,~o 

( g o = g o  l + ~ ( g o - - 4 f o )  ~ z o 

(25) 
L " .fo=fo(1-t'-(go--4fo)(Z)4-dl'(TO('~g) )) 

L 2 
 o: o,o 

The function I(x) may be written in the form 

1 1 1 o~ 
I(x)=(2~)a,~ox+n2-(2rt)afo dte-X'(A(t)d-1) (26) 

where 

(t) (t) A(t) = e-"2'= A (27) 
n =  - - o o  

Equation (27) (which follows from Poisson's formula ~2~ shows that the 
integral I(x) diverges for d>~ 2. Using dimensional regularization, we get ~21 

l(x) = G~ (a(x) -2--~) (28) 

where a(x) is finite for e = 0. For e = 0 and x large a(x) behaves as 

a(x) ~_ x(ln x - 1) + O(x ~ (29) 

while 

1 I ;  ( - ( t ) 2 - 1 ) =  rc 2 (30) a(O) =-~i dt A(t)" 8 In 2 

The coefficients in the Taylor series for a(x) are given in the appendix of 
ref. 12. 

where 
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To obtain a renormalized effective action we insert I(x) [Eq. (28)] 
into Eqs. (25) and (24) and express the bare couplings and fields by their 
renormalized counterparts. In this way one finds the effective renormalized 
couplings 

f=z ( l+(2- -v ) (a~) -21n-~n) )  

~ = g  l + ~ ( u - 4 v )  a ' ( x ) - l n ~  
(31) 

f=f(l+(u--4v)(a'(x)--ln-~n)) 

where x = r(L/(2r0) 2. The scaling behavior of the functions ~(r, L), ~(~, L), 
f(~, L), and r L) may be derived from renormalization group equations. 
At the random-fixed point u, =4(3e/106) m, v, = (3e/106) '/2 we obtain 

(#L']~1/,',+~ -2 

(]2L~ d-4+2q 
= g* \-'~n,] G(y) 

(32) (.L~-4+2. 
f = f ,  \ ~ ' /  F(y) 

~= ~n R(y) 

with the scaling variable y = (z/p2)(~L/(2n))u". Since these functions must 
become independent of L in the bulk limit L ~ ~ we expect the asymptotic 
behavior 

T(y),~ y-'+~(2-'l) R(y)~ y-~C~-2+'n 
G(y).... y,,ta_d_2,1 ) F ( y ) ~  yV(4_d_2n ~ for y ~ o o  (33) 

Using - 1 + v(2 :-- q) = (3e/106) + -..,  we may write 

( 3e ~'/2 a(y) + O(e) 
T(y) = 1 + \ ~-~j Y 

= ( l + Y ) - ' + " ' 2 - ~ ' {  1 + \(3e~U2[aT)--ln(l+Y)]+O(e) (34) 
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which explicitly displays the expected behavior for large y. Analogously, 
one finds 

R(Y)=(I+Y)-"~-~+~ 1 \'i-~] [a ' (y ) - ln ( l+y)]+O(e)  (35) 

Note that F(y) and a(y) are trivially F(y) -- 1 + O(e) and a(y) = 1 + O(e) 
to this order. Since ~=O(e) ,  this is consistent with the limiting 
behavior (33). 

In order to calculate correlation functions for the homogeneous 
mode M in the finite-size scaling limit one has to perform functional 
averages with the weight e x p ( - ~ o m ) ,  where 

- ~  22 f ( I  dtl~lM) 2] (36, 

Since we are especially interested in relaxation times, it is appropriate to 
describe the dynamics in the form of a Fokker-Planck equation equivalent 
to the statistical functional (36). Relaxation rates are then obtained as 
eigenvalues of the Fokker-Planck operator. However, the derivation of a 
Fokker-Planck equation is complicated by the presence of the noise term 
proportional to (~ dt lfflM) 2, which reflects the disorder. This term may be 
formally removed from ~om by introducing an auxiliary Gaussian random 
variable X and an X-dependent dynamic functional ~--x: 

e x p ( - ~ o m [ / ~ ,  M])  = -~o (2n) 1/2 exp - 

x exp( - J x  I-/~, M ] )  (37) 
where 

+ ~ M  3 - ~.f~r} (38) 

The Fokker-Planck equation corresponding to ~--x is given by 

Px(M, t) = H'x(M) + Px(M, t) (39) aM 
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where 

le .f "\ l/2 x ]  m 2 
H x ( M ) = L a { ~ f f + t - ~ ;  + ~ M ' }  (40) 

We now obtain the correlation functions of interest by averaging 
X-dependent solutions of Eq. (39) with respect to X, e.g., 

( d(M(t)) d(M(t')) ) 

f ~ dX -x2/2 (o~r d(M(t ' ) ) )x  
= oo (2g) 1/2 e 

fo~ __dJ( _x2/2f ~ f~  = -~  (2n)~/2 e - - ~  dM -~ dM' ~r o~r 

x P x ( M ' - + M , t - t ' ) P ~ ( M ' )  for t>t'  (41) 

where P~ is the equilibrium distribution N(X) exp(-Hx(M)) and 
Px(M'--+ M, t - t ' )  denotes a transition probability. 

4. UNIVERSAL C U M U L A N T  RATIOS 

A useful quantity in the study of critical phenomena by Monte Carlo 
methods is the cumulant ratio introduced by Binder t2~J 

( M  4 ) 
U =  1 3 ( M 2 ) 2  (42) 

which depends only on the scaling variable y oc zL ~/'. At the critical 
point U becomes a universal number which has been calculated for the 
pure Ising model to second order in x/'-~. 18) 

Since in the case of disordered spin systems one has to perform 
configurational averages, there are three different ratios which may be 
considered: 

_(. <M4> 
UI = 1 ( M 4 )  U~ = 1 ( M 4 )  U3 = 1 (43) 

3 ( M 2 )  2 '  - 3 ( M 2 )  2' \ 3 ( M 2 ) 2 J  

The formalism presented in the previous section permits a straightforward 
calculation of U~. To compute equal-time averages we do not need to 
know the transition probability in Eq. (41), but only the equilibrium 
distribution P~  (M): 

f~  dX _ x2/, f r dM d(M)  P~ (M) (44) ( d ( M ( t ) ) )  = ( d ( M ) ) =  -o~ (2~) iZe  - -~  



904 Oerding 

Defining the functions 

; ( 1) 
F~(x)=  dqq2kexp _ ~ q 2 q 4  for k = 0 ,  1,2 .... (45) 

- o o  

G(x) 
C~.(x) = - -  (46) 

G(x) 

one obtains 

_o~(2n)t/--------~e-X-/2Ck~-~) , +  X (47) 

This yields for T =  Tc at the random-fixed point the universal ratio 

U 1 = 0.216368 + 0.09201781/4 + 0.009625e 1/2 + 0 (8  3/4 ) (48) 

with the three dimensional estimate U~(8 = 1)=0.3180. 
To obtain the average ( M  2)2 or more general correlation functions of 

the form 

(M(tl)k~)(M(tz)~'-) ... (M(t,,) k') (n = 1, 2 .... ) 

we introduce n replicas before taking the configurational average. The 
replica method is necessary at this point because ( M Z )  z is a product of 
two thermal averages which has to be averaged with respect to disorder. 
Since the thermal expectation values have to be calculated for the same 
impurity configuration, the average over disorder does not factorize. 
However, one may use the replica trick to rewrite the product of n thermal 
correlation functions in the form of a single correlation function of n 
different fields. The configurational average can then be performed first. 
This yields the dynamic functional 

~=1 
dt g~s~ (49) 

r  

Taking the trace over q :~ 0 modes, one obtains an effective functional for 
the homogeneous modes h~r, MR : 

~,.hom[]~,M3-~'~td[; dt ~, ~/1~(F~tM~--~M~q-~-~g6 M3~-~FA/I~) 
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As a consequence of causality the functions i, f, ~, and j~ are independent 
of n and thus identical with those given in Eqs. (31), (32). Introducing 
a single Gaussian random variable X as in Eq. (38), it is easy to show 
that the distribution of each mode M,  satisfies the Fokker-Planck equa- 
tion (39). Thus the stationary distribution factorizes and the average of 
( M 2 )  2 with respect to disorder is given by 

-~o (27t) u - - - -~  e -x2/zC~ f + X (51) 

Expanding the ratio U2 at the critical point in powers of e u4, we obtain 

U,_ = 0.401918 + 0.084739e 1/4 - 0.00565 le u2 + O(e 3/4) (52) 

and the three-dimensional estimate U2(e = 1 )=0.4810. 
To compute the third cumulant ratio U3 by the replica method, one 

may extend the average 

< M 4 ~  <M2> " (n=2 ,  3 .... ) 

analytically to a convex function of n and then perform the limit n ~ 0 .  
This procedure is mathematically not rigorous, since the analytic continua- 
tion of a function which is known only for a discrete set of points is not 
unique. However, a particular way of continuation is suggested by the form 
of the effective functional (38) and the Hamiltonian (40): To calculate 
correlation functions of the homogeneous mode at second order in e ~/4 one 
can replace the d-dimensional random field ~,(r) by a single random 
variable X. Adopting this idea for the calculation of ( M 4 ) / ( M 2 )  2, we 
obtain 

( M 2 ) " / / =  -~o (2rQ -~i/: '  e-'~"~ C,((LaI~) '/2 .f + (fl~),/2 X)2 

At the critical point this gives 

U3 = 0.283908 + 0.076024e ~/4 + 0.005347e '/2 + O(e 3/4) (54) 

and the estimate U3(e = 1 ) = 0.3653. 
The computer simulation t4~ of a site-disordered Ising system with a 

concentration p = 0.8 yields U3 = 0.48. The disagreement between the one- 
loop result and the simulation is probably due to the low accuracy of the 
e '/4 expansion for e = 1. On the other hand, one has to check if the simula- 
tion has reached the asymptotic scaling region where exponents and 
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amplitudes calculated at the random fixed point are valid. Deviations from 
the asymptotic scaling behavior lead to concentration-dependent effective 
exponents. The effective exponents obtained in ref. 4 for p = 0.8 are quite 
close to the fixed-point exponents, but the effective U3 may depend more 
sensitively on p than the exponents. Therefore simulations at various 
concentrations could be helpful. Unfortunately, in ref. 4, U3 is only given 
for p = 0.8. 

More accurate analytic estimates for the cumulant ratios could 
probably be obtained at one-loop order from an effective functional in 
three dimensions (i.e., without the e 1/4 expansion). However, beyond the 
second order in e 1/4 we lose the justification for ignoring interactions which 
are not already contained in ,oT-tm One has thus to allow for correlated horn" 

noise and non-Markovian interactions which are generated by tracing out 
the q ~ 0 modes. Even for the pure system there is no work known to the 
author where the effective functional for d-- 3 has been studied. 

5. R E L A X A T I O N  T I M E  D I S T R I B U T I O N S  

Following an idea of Goldschmidt] 221 it is convenient to transform the 
Fokker-Planck equation (39) to a SchrSdinger equation in imaginary time 
and calculate eigenvalues approximately by means of a variational method. 
In order to remove the first-order derivative with respect to M in Eq. (39) 
we express Px(M, t) by a "wave function" (Ix(M, t), 

P x(M, t) --- (Ix(M, t) exp[ - �89 x(M) ] (55) 

and obtain 

2 g-t ~bx(M't)= - ~ 5 + 2  HI'r(M)- [H~'(M)]2 (/x(M,t) (56) 

After the change of variable 

M = (La~) - ~/4 q, 

the Schr6dinger equation becomes 

- 2---22 -~ d/x(q, t) = 

with the Hamiltonian 

1 , 
h(p, q ) = - }  p-  

(b x(M, t)= Ox(q, t) (57) 

h(+ f---~,q) Ox(q,t ) (58) 

+2q-1 , ( x + l q 2 ) 2  ~q2_2K (59) 
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and 

1 1/2 [/~'X 1/2 X]  
(60) 

Given an initial wave function ~b x at time t', the solution of Eq. (58) 
may be written in the form 

~kx(q, t) = dq' G(rc; q, t I q', t') ~bx(q', t') (61) 
- - 0 " 3  

The expansion of the Green function G(~:; q, t I q', t ' )  in terms of eigen- 
functions r (with eigenvalues e~,,,) of the Hamiltonian is given by 

G(~c; q' t I q" t ' )= ~" ~ '" (q)  C)~"(q')*exp - -72~ (L'~ I/2\LdJ e~,.(t -- t ' ) l  (62) 

In ref. 23, some exact eigenvalues e .... for n ~< 5 are computed by a dis- 
cretization technique. For  each n = 2, 3 .... there is a lowest-lying eigenvalue 
�9 e(min) where 0 (min) (min) < e  2 < e  3 < . . .  These eigenvalues accumulate in the n ~ 
region where - x  is of order unity. For  n = 1, e~,~ is an increasing function 
of x with lim . . . .  e~.l = 0. Thus the "energy bands" with small n govern 
the long-time behavior of  the Green function. 

The exact ground state ff~,o(q) with energy e~,o=0 corresponds via 
Eq. (55) to the equilibrium distribution P~  (q), and the Green function is 
related to the transition probability by 

q~,o(q) Px(q'  --* q, t - t ') = G(x; q, t I q', t ') - -  (63) 
~2~,o(q') 

Exploiting Eqs. (63) and (62), we obtain a representation of correlation 
functions in terms of quantum mechanical eigenfunctions: 

( d (q ( t ) )  of(q(t '))  ) x 

= ( d ( q ) ) 2 x  + ~ I(q~ .... [o f (q )  1r -I'-''1/~*." (64) 
n ~ 0  

Here ( o f ( q ) ) x =  (r o f (q) I r  is an equilibrium expectation value. 
The relaxation times 2 

r-~-(Ld~ 1/21 (65) 

% ' " = 2 k k g J  e~,. 

2 Note  that  at the r andom fixed point  %.. is of the order  e -  ~/4. This is in agreement  with the 

time rescaling given in Eq. (23). 

822/78/3-4-16 
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as well as the functions ~b .... depend on the random variable X. Once the 
e .... are known, we are able to transform the distribution of X to a distribu- 
tion of relaxation times. The average of correlation functions with respect 
to disorder can be rewritten as 

( d(q(t)) sg(q(t')) ) - ( sl(q) 2) 

= (2r t0 .2)1/2 Z le'.(0)l exp - ~ [ ? . ( 0 ) -  g]2 
n # O  

x I (~b~,,~0),,,I ~r exp f~ (66) 

The function ?,,(0) gives the value of the parameter K such that e~,. = 1/0. 
If e~,. as a function of x is not one-to-one (this is the case for n/> 2), we 
have to divide the region - o o  < X <  oo into appropriate intervals in which 
?.(0) is well defined. In Eq. (66), ~ and the variance a 2 are given by 

= l  (La)'/2f,  a z ] (67) 
2 \g  ) =43 

At the fixed point one obtains the scaling behavior 

1F(2rt)aG~l 1/z yT(y) (68) 
ff:(r'L)=2 L u--~- j [G(y) ]  m 

v. F(y) 
a(T, L) ~ -  - -  (69) 

4u,  G(y) 

with the functions F(y), G(y), and T(y) defined in (32). 
The spectral density p ~  is related to the normalized correlation 

function 

by 

( ~r ) ~r ) - (s~C(q) )z 
�9 ~ ( t -  t ' ) =  (70) ( d ( q )  2) - ( d ( q ) )  2 

�9 ~ ( t -  t ' ) =  dzp.~,(v) e -I'-''l/" (71) 

(Here the relaxation time T should not be mixed up with the temperature 
parameter. In the sequel the scaled temperature variable y shall be used.) 
From Eq. (66) one easily derives the scaling behavior 

p.~t(L, y; ~) = L--'p ~( 1, y; L - : z )  (72) 
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At the bulk critical temperature T =  Tc (i.e., y = 0) we find in particular 

p d ( L , O ; ' r ) = 2 2 # 2 ( ~ ) - ~ A P o . d ( 2 2 # 2 ~ ( - ~ n ) - : A  ) (73) 

with the scaling factor 

1 F u ,  G( O) l lj2 
A = ~ L(2~)" G_] (74) 

and the universal scaling function 

po.~(O) c~,(2na2)m ~ I?'.(0)1 exp - - -  D , , ( O ) - f f ] z  n ~ o 20"2 

x I <G,{o~,. I "~r 2 (75) 

At leading order in ~1/4 we have at the critical point 

1 ( 3e "~'/4 no.(0)(1 _1_ O(x//-~)), 0"2 1 
f i = 4 \ 1 0 6 J  = ]-~ (1 + O(e)) (76) 

The density p ~  is normalized by the static correlation of ~r i.e., 

c~  = < d ( q )  2 > - < ~ ( q )  >2 (77) 

Notice that for a pure system (fixed point v .  = 0, 0.2= 0) Po.~ becomes a 
sum of &functions reflecting a discrete spectrum of relaxation times. 

According to Eq. (65), the largest relaxation times correspond to the 
lowest energy levels with a nonvanishing matrix element <~b .... I ~r [~b~,o). 
In this paper, we consider as examples the odd quantity (with respect to 
parity) d ( q ) =  q and d ( q ) =  q2 as an even observable. While the behavior 
of p~,(O) is governed by the first exited state ~ .1 ,  the largest possible 
relaxation times of q2 occur for n = 2. To obtain approximate results for 
eigenvalues as well as for eigenfunctions we start from the variational 
ansatz (22) 

(~,~. l(q) = NI qe- ct(q2 + fl)2 ( 7 8 )  

and 

~K,2(q) = N2( 1 -- Bq z) e - ,~q2 + #)2 (79) 

Here N,(~,/~) and Nz(~,/~) are normalization constants and the coefficient 
B(~,/~) follows from orthogonality:  <~b~,2 I ~b~.o> = 0. 
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Fig. 2. 

J 
\ 

\ 

The relaxation time distribution Pq.o of the order parameter. The broken line shows 
the asymptotic form described in the text. 

The minima of 

E~,,(a, f l )=(~b .... I h ( p , q ) ] O  .... ) ( n = l ,  2) (80) 

and the matrix elements <~ .... I d(q)I~b~,o) have been calculated for values 
o f x  in the range - 0 . 5 < x <  1.5 (for n =  1) and - 1 . 5 < x < 0 . 5  (for n = 2 )  
by the simplex methodJ  24) The results are used to interpolate the functions 
~,,,(0) and <(~,,~o1,,,I d(q)I~br,~0j.o> by means of the interpolation routine of 
Mathematica/25) This procedure yields the scaling functions Pq, o(O) and 
pq2,0(O ) shown in Figs. 2 and 3. 

The singularity pq2,0(O)~(Om--O) -1/2 at  0m.~1.69 is due to a 
minimum of ek.2 and coincides with the largest relaxation time of q2 

I 

r - I 

/ :  

2 

, j ....._.....4.._.__~ j j J 

0 II 12 13 14 15 16 

Fig. 3. The relaxation time distribution P?.o. 
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correlations. For {>>0., (with a scaled time [oc L - ~ t )  the correlation 
function Cq~(t-) shows an exponential behavior 

Cq,_( t-) ~ e - e/o,, (81 ) 

while for [ ~  0,,, contributions of short relaxation times are appreciable 
and induce a faster decay. This behavior is expected for all even observ- 
ables d (q ) .  

A very different situation occurs for ~r  q. The long-time tail of 
Pu.o(O) results from the almost degenerate ground state of the Hamiltonian 
h(p, q) in the limit x ---, -oo .  This effect may be explained physically by the 
local shift of the temperature caused by impurities: There are regions in the 
system where the temperature is shifted considerably below T,. and, as a 
mesoscopic analog of spontaneous symmetry breaking, parallel spin con- 
figurations decay very slowly. 

While the variational method gives sufficiently accurate results for the 
region of 0 displayed in Fig. 2, the asymptotic behavior of "~,,,(0) for 0 ~ 
may be derived by instanton methods. The energy of the first exited state 
behaves as 

(6)"2 
e~.j= ( - ~:) exp[ - (6~c2 + 3/2)] for ~ : ~ - ~  (82) 

A short derivation of this behavior is given in the appendix. Solving 
Eq. (82) for re, we get 

- + In I n 0 -  for 0 ~  (83) 

To obtain an approximation for the matrix element (~b~,l [ q ]~b~.o) we use 
the variational wave function (78) with ~ = 1/48, fl = 12x [this choice mini- 
mizes the energy E~,I(a, fl) for h ' ~  - ~ ] :  

(~b~.l I q I~b~..o) "" ( - 12~) '/2 for ~ - a z  (84) 

This result is robust on changes of the variational wave function since any 
ansatz ~b~.~(q)oz q " e x p [ - ( q 2 + 1 2 x ) z / 4 8 ]  with an odd exponent n>_-I 
gives the limiting behavior (84). 

In Fig. 2 the asymptotic form of Pq.o(O) is compared with the numeri- 
cal result for 0"~< 20. 

6. DISCUSSION 

Finite-size scaling effects of the Ising model with random impurities 
have been investigated. Since the relaxation of this system is strongly 
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affected by disorder, special attention was focused on dynamics. While the 
linear relaxation of a pure system may be described by a discrete set of 
relaxation times, impurities generate a continuous spectrum. We have 
calculated the spectral density for correlations of the magnetization M and 
for correlations of M z at the critical point. The results show that M 2 
correlations decay exponentially for large scaled times t-=L-~t,  whereas 
correlations of the magnetization display a power-like behavior. 

The continuous spectrum of relaxation times, especially the arbitrarily 
long relaxation times of the magnetization, is a remarkable difference from 
the pure Ising model. It can be explained as follows. Since the impurities 
tend to hamper the formation of magnetic order, the critical temperature 
Tc(p ) of the random system is shifted below that of the pure system, To(l). 
If the system is sufficiently large, there will be large regions almost free of 
impurities in which parallel spin configurations decay very slowly at tem- 
peratures below To(l). In regions with a high concentration of impurities, 
on the other hand, the relaxation takes place very rapidly. Since the homo- 
geneous mode of the magnetization contains contributions from different 
regions of the system with different concentrations of impurities and 
different relaxation rates, the spectrum becomes continuous in the finite- 
size scaling limit (L ~ co, ~ ~ co, ~/L arbitrary). 

The long relaxation times of the order parameter have thus the same 
origin as the nonanalytic behavior above the critical temperature in dilute 
Ising magnets (Griffiths singularities), c261 In the thermodynamic limit there 
are arbitrarily large regions free of impurities in which the system tends to 
order below the critical point of the pure system. As a result the magnetiza- 
tion below Tc(1) is a nonanalytic function of the external magnetic field. 
This is true even for concentrations of magnetic sites below the percolation 
threshold Pc. 

Because of this relationship between relaxation times and Griffits 
singularities one might speculate that the long-time tail in the spectrum 
of M occurs at all temperatures below Tc(1 ) and concentrations Pc < P < 1. 
But this is beyond the validity of the field-theoretic approach presented in 
this paper and should be checked by computer simulations. At least near 
the critical point of the random system the spectral densities of M and M 2 
retain their qualitative form. 

The functions PO.q and po.q2 shown in Figs. 2 and 3 describe the spectral 
densities in the asymptotic scaling region at the critical point. For extreme 
concentrations (close to the percolation threshold or p < 1) a very large 
system size is required to observe the asymptotic scaling behavior. If, for 
example, the impurities are very dilute and the system is comparatively 
small (L3=503, say) the spectrum is expected to be strongly peaked 
near the discrete relaxation times of the pure system. To calculate 
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nonasymptotic spectral densities by renormalization group techniques one 
has to study the flow of the coupling constants away from the fixed points. 
This leads to size-dependent effective coupling constants ~(L) and g(L) 
and parameter functions ~, ~, jr,, and P which violate the asymptotic 
scaling forms (32). 

In a paper of Heuer ~5~ the correlation function of IMI for a site- 
disordered Ising system with a concentration p = 0.6 is shown. For this 
concentration the approach to the asymptotic region is quite slow. 
Crossover effects are expected to be less important for p ~ 0.8 since for this 
concentration even comparatively small systems may be described by 
asymptotic exponents, t4~ 

An interesting subject for further studies is the nonlinear relaxation of 
the magnetization at Tc. In the case of a pure system with an initial 
magnetization Mo >> L -p/" the relaxation displays a crossover from the bulk 
behavior M ( t ) ~  t -~/~v:~ to an exponential decayJ 22~ This behavior will be 
changed in the presence of random impurities due to the continuous relaxa- 
tion time spectrum of the order parameter. 

If initial correlations are of short range, the magnetization grows at 
early times t,~ M o  w/~+v-'~ like a power t o' with a new exponent Or. (27"16) 

In connection with finite-size scaling this initial slip behavior is discussed 
in ref. 28. 

A P P E N D I X  

To obtain the energy G.1 of the first excited state of the Hamiltonian 
h(p, q) in the limit x ---, - o e  we rescale the coordinate q --, q' = q/x/-2x and 
rewrite the stationary Schr6dinger equation in the form 

with 

and the potential 

( 102 ( - ~ ) )  
. . . .  ~- x2V ~b~,,(q) = G,,~)~,,(q) (A1) 

20q 2 

1 1 
g,r - ( _ x )  G , ~ - ~  (A2) 

q2,2 1 q2 (A3) V(q)=~q 2 1 - - - - ~ j - - ~  

While the degeneracy between q = 0 and q = _+x/~  is lifted at first order 
in 1/~ 2, the classical minima at q - - + x / / ~  correspond to quantum 
mechanical energy levels which are degenerate at all order in the perturba- 
tion theory.~l i ) 
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We calculate the energy gap G.~-g,~,o by an instanton method which 
is described in detail in ref. 29. Consider the quantity 

Tr Pe-tlt4 = ~ ( _ 1 )" e-  I~K., (A4) 
/ !  

where P is the parity operator and H denotes the Hamiltonian on the l.h.s. 
of Eq. (A1). For x--+ - ~ ,  fl--+ ~ the trace is dominated by 

Tr Pe -tin ~- ~(g~.~ - G.o) e -t~e-'~ (A5) 

In the same limits we obtain by a quasiclassical approximation ~29) 

. aE( )l',2 Tr Pe-t~n = z ~ / J  k - - - ~ j  exp[-~czs(fl)] (A6) 

Here E(fl) and S(fl) are the energy and classical action of a particle moving 
in the potential - V(q) on a trajectory which connects the classical turning 
points +q,  [i.e., V(+q , )+  E =  0]. fl is the time required for one passage 
from - q ,  to q,. Since this trajectory only exists for V(+q,) < V(0), we may 
not a priori neglect the term proportional to 1/• 2 in the potential (A3). For 
small 1/~c 2 and fl -+ ~ we obtain 

[ , (,)] q , = x / / ~  l + l - ~ x 2 + O  ~7~ (A7) 

E(/3)=~-5~2+O ~-~-6144x4e -2t~ 1 + O  (A8) 

and 

S(~) = f';' dq {2[ V(q) + E(~)] },/2 _ E(~)/~ 
qt 

, +o (1)]+6 (, = - 

[ln(-K)~ 
+ ~ l n ( - 4 ~ : ) + O \  x4 ] 

Inserting these expressions into Eq. (A6) yields 

Tr Pe-t~t4 ~_ ( 6 )  '/2 fleP/2e-(6~2 + 3/2, 

(A9) 

(AI0) 
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Thus  the a sympto t i c  fo rm of the energy  e~,~ in the l imit  ~:--, - ~  is g iven 

by 

~x.| = ( - - K )  e-~6K'+3/2) (All) 
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